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Spontaneous variability in gamma dynamics
described by a damped harmonic oscillator
driven by noise
Georgios Spyropoulos 1✉, Matteo Saponati1,2, Jarrod Robert Dowdall1,2, Marieke Louise Schölvinck1,

Conrado Arturo Bosman3,4, Bruss Lima 5,6, Alina Peter 1,2, Irene Onorato1,2, Johanna Klon-Lipok1,5,

Rasmus Roese1, Sergio Neuenschwander5,7, Pascal Fries 1,3,9✉ & Martin Vinck 1,8,9✉

Circuits of excitatory and inhibitory neurons generate gamma-rhythmic activity (30–80 Hz).

Gamma-cycles show spontaneous variability in amplitude and duration. To investigate the

mechanisms underlying this variability, we recorded local-field-potentials (LFPs) and spikes

from awake macaque V1. We developed a noise-robust method to detect gamma-cycle

amplitudes and durations, which showed a weak but positive correlation. This correlation, and

the joint amplitude-duration distribution, is well reproduced by a noise-driven damped har-

monic oscillator. This model accurately fits LFP power-spectra, is equivalent to a linear, noise-

driven E-I circuit, and recapitulates two additional features of gamma: (1) Amplitude-duration

correlations decrease with oscillation strength; (2) amplitudes and durations exhibit strong

and weak autocorrelations, respectively, depending on oscillation strength. Finally, longer

gamma-cycles are associated with stronger spike-synchrony, but lower spike-rates in both

(putative) excitatory and inhibitory neurons. In sum, V1 gamma-dynamics are well described

by the simplest possible model of gamma: A damped harmonic oscillator driven by noise.
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The brain consists of different kinds of cell types, which have
unique properties and are commonly divided into inhibi-
tory (I) and excitatory (E) neurons. E-I Interactions can

generate collective rhythmic activity in different frequency bands.
One of the “faster” rhythms in neocortical circuits is the gamma
rhythm (30–80 Hz), whose function has been heavily debated in
the literature1–15. This rhythm can be observed at many scales,
from the macro/meso-scale (MEG, EEG, ECoG, LFP), to the
microscale (synaptic currents and spiking activity)6,16,17. It is
however unknown how the properties of collective neuronal
gamma synchronization can arise from interactions between its
microscopic constituents16,18.

Analysis of macro/meso-scopic gamma dynamics has revealed
substantial variability in the amplitude and frequency of gamma
oscillations as a function of time, but also cortical space4,11,19–23.
In particular, gamma oscillations are not well approximated by
sinusoids4, despite the fact that they are often depicted as such.
Rather, they show major fluctuations in amplitude over time,
sometimes described as “bursts”; as well as their frequency, giving
rise to the broad-band spectral nature of gamma. These fluctua-
tions likely reflect the properties of the underlying E-I circuit and
the way it responds to changes in input drive, and they are
relevant for the possible functional roles of gamma5,8,10,11,13,23.
Previous work in rodent hippocampus24 has suggested that cycle-
by-cycle fluctuations in amplitude and duration (i.e. the inverse of
frequency) are explained by two model components: (1) cycle-by-
cycle fluctuations in synaptic excitation; and (2) balanced, bidir-
ectional interactions between E and I neurons, consistent with the
PING (Pyramidal Interneuronal Network Gamma) model of the
gamma rhythm3,6,25–29. The proposed model for hippocampus
holds that the occurrence of a strong bout of synaptic excitation
will be balanced by high-amplitude, long-lasting inhibition. As
predicted from this model, gamma-cycle amplitude and duration
were reported to be strongly correlated (r= 0.61) in rodent
hippocampus24.

The starting point of the present study was to see whether this
regularity generalizes to other cortical circuits, in particular to
awake primate visual cortex, another system where gamma
oscillations have been extensively studied. It remains unclear how
the mechanisms of gamma in visual cortex compare to hippo-
campus. It appears that E-I mechanisms of gamma in higher
visual areas (V4) might be comparable to hippocampus29,
although there is evidence that they are substantially different in
primary visual cortex (V1)30. Furthermore, the dependence of
V1/V2 gamma on stimulus contrast suggests that increases in
synaptic excitation lead to increases rather than decreases in the
frequency of V1/V2 gamma20,31. It is unknown, however, what
the relationship is between spontaneous fluctuations in gamma-
cycle amplitude and duration in V1. Our paper consists of two
parts: In the first part (Figs. 1–5), we show a positive correlation
between spontaneous fluctuations in gamma-cycle amplitude and
duration and address several confounds inherent to cycle-by-
cycle analyses. In the second part (Figs. 6–9), we examine the
mechanisms underlying these correlations by analyzing spiking
activity and drawing a comparison with a damped harmonic
oscillator model driven by noise.

Results
Recordings and task. We recorded LFPs and spiking activity
from area V1 of several awake macaque monkeys (see Methods).
Monkeys performed a fixation task while drifting gratings or
uniform colored surfaces were presented. Figure 1a shows an
example trial of broad-band LFP recorded during the presenta-
tion of a full-screen drifting grating. The trial-average spectra of
absolute power (Fig. 1b) and of the power-change relative to pre-

stimulus baseline (Fig. 1c) reveal strong visually-induced gamma
oscillations. Time-frequency analysis (Fig. 1d) shows that this
induced gamma rhythm is sustained for the duration of the
visual-stimulation period. Figure 1f–i shows similar results for
colored surface stimuli32,33.

The correlation between gamma-cycle amplitude and duration.
A previous study has examined correlations between the ampli-
tude and duration of individual gamma cycles in rat hippo-
campus CA331, and reported a strongly positive (r= 0.61)
correlation, both in vivo and in vitro. We wondered whether a
similarly strong correlation exists in monkey V1. We therefore
used the same analysis method as previously used for rat hip-
pocampus. This method is based on (1) band-pass filtering LFP
signals, (2) detecting periods of high-amplitude gamma activity,
and (3) detecting empirical peaks and troughs in the filtered
signal (Fig. 2a, b; see Methods section). Using this method, we
found a relatively strong positive (r= 0.361) correlation between
the amplitude and duration of individual gamma cycles during
the visual stimulation period (Fig. 2c). By contrast, correlations
between the amplitude of a given cycle and the duration of either
the preceding or succeeding cycle were not significant (Fig. 2c).

We expected that this result would be specific to the visual
stimulation period, during which gamma oscillations were
prominent, but that it would not hold for the pre-stimulus
period, during which there was no visible gamma peak in the LFP
power spectrum (Fig. 1b, g). Yet, for the pre-stimulus period, the
algorithm detailed above detected a substantial amount of gamma
epochs. Surprisingly, we observed even stronger correlations
between gamma-cycle amplitudes and durations for the pre-
stimulus (r= 0.605) compared to the stimulus period (Fig. 2d).

This prompted us to investigate whether the same algorithm
would also detect a positive correlation between gamma-cycle
amplitudes and durations for synthetic 1/fn noise signals (Fig. 2e, f).
This was indeed the case (Fig. 2g). Thus, noisy fluctuations in a
signal without rhythmic components can give rise to a strong
positive correlation between the amplitudes and durations of
detected “gamma cycles”. The presence of a positive correlation
between amplitudes and durations can be made intuitive by
considering a random walk process: In such a process, the
magnitudes of successive increments or decrements are independent
of each other, with zero mean. In this case, a successive series of
positive increments typically results in a “cycle” with a high
amplitude and a long duration. By contrast, a rapid reversal typically
results in a low-amplitude “cycle” with a short duration. Hence, the
positive correlation between gamma-cycle amplitude and duration
in the stimulus period may have been due to noisy background
fluctuations instead of oscillatory activity.

This prompted us to develop a method that (1) avoided band-
pass filtering in a narrow frequency-range; and (2) ensured that
gamma peaks and troughs were not detected due to noisy
fluctuations, but reflected a rhythmic process (Fig. 3a–d; see
Methods section). Note that in our datasets, only gamma-cycles
fulfilled the necessary criteria on oscillatory behavior as defined by
the Hilbert phase spectrum. To obtain estimates of gamma-cycle
amplitudes and durations with a high temporal resolution, we
measured them in periods of “half-cycles” (i.e. peak-to-trough or
trough-or-peak). (For the rest of the text, we will be referring to
the amplitudes and durations of individual gamma half-cycles as
“gamma-cycle amplitudes” and “gamma-cycle durations”, and will
mention explicitly when we measure them in full rather than half
cycles). In contrast to the previous method (Fig. 2), our method
detected very few gamma cycles in the pre-stimulus period
(Fig. 3a–c). Because of this, a correlation between gamma-cycle
amplitude and duration could not be reliably computed for this
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period. To further examine the noise-robustness of our method,
we simulated an AR(2) (2nd order auto-regressive) process that
had a positive correlation between gamma-cycle amplitudes and
durations in the absence of noise. We then added 1/f2 background
noise of different intensities (see Methods section). We found that
our method did not yield spurious correlations due to the

inclusion of noise; instead it failed to detect any gamma cycles for
higher noise-levels (red line in Fig. 3e). By contrast, the previous
method (Fig. 2) produced higher correlations when the noise-level
increased (black line in Fig. 3e).

Using this new method, we then detected gamma-cycle
amplitudes and durations for all trials and available time-points,
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Fig. 1 Gamma dynamics in awake macaque V1 during visual stimulation. a Raw LFP trace from one representative recording site from area V1 in monkey
T before and during the presentation of a full-screen drifting grating. b, c Raw power (b) and power-change relative to baseline (c), averaged across all
selected recording sites from V1 in monkey T. The green and black traces in b correspond to the pre-stimulus baseline period and stimulation period
respectively. The error regions show 2 standard errors of the mean (S.E.M.) based on a bootstrap procedure across trials (1000 bootstraps). d Power
change relative to baseline, as function of frequency and time relative to stimulus onset, averaged over all selected V1 recording sites in monkey T before
and during the presentation of a full-screen drifting grating. Note the changes in gamma amplitude and frequency with time after stimulus onset. e Time
course of gamma-half-cycle amplitude (blue) and duration (red), averaged over all selected V1 recording sites in monkey T during the presentation of a full-
screen drifting grating. The error regions show ±2 SEM based on a bootstrap procedure. Only the stimulation period is shown, because only very few
gamma cycles of very low amplitude were detected before stimulus onset. f–j Same as a–e, but for the presentation of a full-screen uniform color surface.
a, d, f, i Dashed lines indicate stimulus onset.
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separately for each channel and stimulus condition. Because we
were interested in spontaneous variability, we further ensured
that correlations between gamma- cycle amplitudes and durations
could not arise due to the time courses of amplitude and duration
after stimulus onset (Fig. 1e, j). We achieved this by computing
correlations across trials, separately for each available post-
stimulus time-point and then averaging the correlations over
time-points (see Methods section). With this approach, we found
that the amplitudes and durations of individual gamma half-
cycles were positively correlated in all tested datasets (Fig. 4a).
The magnitude of these correlations was, on average, substantially
lower (rho= 0.199; Pearson’s r= 0.197) than the one observed
with the previously employed method (compare Figs. 2c and 4a,
t-test between Pearson’s r across datasets, p= 0.0084). In
addition, we computed the correlation between the amplitude

of a given half-cycle and the duration of the previous or the
subsequent half-cycles, and this did not result in a consistent
pattern of correlations across datasets (white bars in Fig. 4a).
Similar results were obtained for full rather than half cycles, with
significant correlations only for the same cycle comparison, but
not for the preceding and succeeding cycle (Supplementary
Fig. 1a).

The influence of slow dynamics and microsaccades. We won-
dered whether the observed correlation between gamma-cycle
amplitudes and durations may have resulted from correlated
changes in amplitudes and durations at relatively slow time-
scales, e.g. due to drifts or slow oscillations in the monkey’s state,
or stimulus repetition effects33–35. In order to control for the
potential influence of such changes, we computed the correlation

am
p

IEI

0 1 2

0.6

0.7

Noise exponent

Pe
ar

so
n’

s 
r a

m
p 

x 
du

r

0.5

0

Pe
ar

so
n’

s 
r a

m
p 

x 
du

r

Mon
ke

y I
 G

rat
ing

Mon
ke

y J
 G

rat
ing

Mon
ke

y P
 G

rat
ing

Mon
ke

y T
 G

rat
ing

Mon
ke

y H
 C

olo
r

Mon
ke

y I
 C

olo
r

Mon
ke

y T
 C

olo
r

Avg
 ac

ros
s D

ata
se

ts
-0.5

Visual stimulation period

Mon
ke

y J
 G

rat
ing

Mon
ke

y T
 G

rat
ing

Mon
ke

y H
 C

olo
r

Mon
ke

y T
 C

olo
r

Avg
 ac

ros
s D

ata
se

ts

0.6

0

-0.6

Pre-stimulus period

Frequency (Hz)
40 802

100

10-5

Po
w

er
 (A

.U
.)

100 ms

LFP 20-100 Hz

Noise 20-100 Hz

a
b

c

d
e

f g

100 msPe
ar

so
n’

s 
r a

m
p 

x 
du

r

Fig. 2 Estimation of correlation between gamma-cycle amplitude and duration can be influenced by noise. a LFP trace filtered in the gamma range
(20–100 Hz). Red dots indicate local maxima and minima. b Segment of the trace in a demonstrating the definition of gamma-cycle amplitude and inter-
event interval, i.e. gamma-cycle duration. c For each dataset listed on the x-axis, the three bars show the correlation between gamma-cycle amplitudes and
the durations of the same gamma cycle (center, red), the previous gamma cycle (left, white), and the next gamma cycle (right, white). On the right, this is
shown for the average across all datasets. This was calculated for the visual stimulation period. Amplitude and duration values were extracted as in Roberts
et al.31, including the filtering illustrated in a, b; note that the employed subtraction of a boxcar-smoothed signal amounts to a high-pass-filtering at 20 Hz.
For each dataset, a null distribution was produced by randomizing the order of duration values across trials, and the resulting means and 99.9% confidence
intervals are shown as dots and vertical lines (numbers of trials= 278, 5740, 672, 1075, 672, 320, 142 for respective datasets). For the average across
datasets, shown on the right, we performed a two-sided t-test and show the resulting confidence intervals as vertical lines on the observed mean (red bar:
p < 5 × 10−5, white bars for preceding cycle: p= 0.28, white bars for succeeding cycle: p= 0.56). In addition, we performed a two-sided non-parametric
permutation test (red bar: p < 0.05; white bars: p > 0.05). n = 6 biologically independent experiments. d Same as c but for the pre-stimulus baseline
(numbers of trials= 5740, 1075, 672, 142 for respective datasets; averages across datasets: red bar: p= 4.51 × 10−5, two-sided t-test across datasets;
white bars p= 0.011 and p= 0.038, respectively for preceding and succeeding cycles, two-sided t-test across datasets). n= 6 biologically independent
experiments. e Example synthetic colored noise trace filtered in the gamma range (20-100Hz). Red dots indicate local maxima and minima. f Power
spectra of synthetic colored noise signals with a spectral shape of 1/fn, with n assuming values from 0 (dark blue) to 2 (bright yellow). g Correlation of the
amplitude and duration of individual deflections in synthetic colored noise signals. Dots and vertical lines indicate means ±2 SEM produced by a bootstrap
procedure (1000 bootstraps). The color conventions are the same as in f. Source data are provided in the Source Data file.
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between the amplitude of a given half-cycle and the duration of
multiple preceding and succeeding half-cycles (Fig. 4b). Some
datasets showed dynamics on the temporal scale of few half-cycles
(Fig. 4b, left), and others on the scale of multiple half-cycles
(Fig. 4b, middle and right). For example, the right panel in Fig. 4b
shows a long-lasting, negative trend punctuated by a small
positive value for the instantaneous correlation. By contrast, the
middle panel shows a positive trend peaking at zero lag. These

trends may have contributed to the observed correlation between
gamma-cycle amplitude and duration. We therefore removed the
influence of slower dynamics through a linear regression analysis
(see Methods section). In this analysis, we first regressed out
linear predictions of gamma-cycle amplitude and of duration
from previous and succeeding cycles, obtaining regression resi-
duals for amplitude and duration. We then repeated the analysis
of amplitude-duration correlations on these regression residuals
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Source data are provided in the Source Data file.
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(see Methods section). We found that the resulting correlation
was comparable to the correlation between raw amplitude and
duration (compare Fig. 4a, c). Similar results were obtained for
full cycles (Supplementary Fig. 1b). Together, these findings
indicate that the positive correlation between gamma-cycle
amplitudes and durations was not due to within- or across-trial
trends on a longer timescale. Further analyses also suggest that
the correlation between gamma-cycle amplitudes and durations
was not due to transient changes in amplitudes and durations
following microsaccades (Supplementary Fig. 2; see Methods
section).

To further understand the contribution of non-stationarities to
the correlation between gamma-cycle amplitudes and durations,
we fitted autoregressive (AR) models to the LFP data (50–100
linear terms; see Methods section). AR models capture the
variance and auto-correlation of the LFP, and can then be used to
generate a stationary surrogate time-series, (by stationary we
mean that the underlying statistics of the signal do not change
over time). Supplementary Fig. 3a–d illustrates this for the dataset
used for Fig. 1a–e. We find that the AR model accurately captured
the power spectrum (Supplementary Fig. 3b), but did not
replicate slower dynamics in gamma-cycle amplitudes or
durations (Supplementary Fig. 3c, d; compare to Fig. 1d, e). In
the surrogate data generated by the fitted AR models, we then
analyzed the correlations between gamma-cycle amplitudes and
durations, and found consistently positive correlations of similar
average strength as in the original data (Supplementary Fig. 3e).
Similar results were obtained for full rather than half cycles
(Supplementary Fig. 1d). These results further support the notion
that the observed correlations in the LFP data were not due to co-
fluctuations or non-stationarities on a slower time scale.

The cycle-based amplitude spectrum and the rate of incidence
of cycle-durations. In the V1 LFP data, we observed a small
but positive correlation between gamma-cycle amplitudes
and durations. This correlation, however, does not necessarily
imply a monotonic or linear relationship between gamma-cycle
amplitudes and durations, as was previously reported for
hippocampus24. We thus examined the joint distribution of
gamma-cycle amplitudes and durations in more detail. To this
end, we first computed the average half-cycle amplitude for each
possible half-cycle duration (Fig. 5a, see Methods section); we
refer to this as the cycle-based amplitude spectrum (CBAS). To

minimize the possible influence of stimulus-locked trends in
gamma amplitude and frequency, we used only the final 250 ms
of visual stimulation. To average CBASs across monkeys, we first
converted half-cycle duration values to frequency values (in Hz).
We then aligned the CBASs to the “gamma peak frequency”, that
is the frequency at which the Fourier-based power spectrum
(FBPS) reached a maximum. In the CBAS, we found that the
relationship between frequency and amplitude was non-mono-
tonic: The amplitude was greatest at a frequency that was lower
than the peak gamma frequency, and showed a decline towards
higher gamma frequencies. We further wondered how often
different gamma-cycle durations tended to occur. We therefore
computed the cycle- frequency (i.e. inverse of gamma-cycle
duration) distribution. We found that the cycle-frequency dis-
tribution was approximately symmetric and was unimodal, which
argues against multiple sources of gamma being mixed in. Spe-
cifically, the most prevalent half-cycle frequency lied within one
Hertz of the peak gamma- frequency derived from the FBPS
(Fig. 5a and Supplementary Fig. 4a).

We wondered whether the observed dependency of gamma-
cycle amplitude on cycle-frequency may have been due to a
ceiling effect, because our new method selected those broad-band
LFP segments for which gamma rhythms were relatively strong.
This selection circumvented several methodological problems, but
it may have limited the generalizability of our findings. To
address this issue, we re-analyzed the data after band-pass
filtering the LFP in the gamma-frequency range (20–100 Hz).
This modification substantially increased our sensitivity in
detecting gamma episodes. The distributions of cycle-frequency
and amplitude that we obtained after band-pass filtering were,
nevertheless, highly similar to the ones calculated on the broad-
band signal (Fig. 5b and Supplementary Fig. 4b).

Relationship of gamma frequency with spiking. Next, we aimed
to obtain further insight into the mechanisms underlying
amplitude-duration correlations. We first asked how the spon-
taneous dynamics of gamma oscillations related to the activation
and phase-locking of excitatory and inhibitory neurons. The
model of Atallah and Scanziani, discussed above, predicts that
higher-amplitude gamma cycles are initiated by a stronger bout of
excitatory spiking. These excitatory bouts should then give rise to
longer-lasting inhibition, resulting in longer gamma cycles24.

In order to assess if this prediction holds true for V1, we
analyzed multi-unit (MUA) activity (see Methods section). We
first computed the normalized spike count (number of spikes per
cycle) (Fig. 6a) as a function of the gamma-cycle frequency (the
inverse of gamma-cycle duration; see Methods section). The
normalized spike count was negatively correlated with gamma-
cycle frequency (Fig. 6d). This may be a trivial result, because the
spike count reflects the product of firing rate and gamma-cycle
duration. To correct for this, we divided the spike count by the
duration, yielding the firing rate (spikes/sec). Firing rates were
positively correlated with gamma-cycle frequency (Fig. 6b, d). To
investigate if the same result held true for different excitatory and
inhibitory cell classes, we classified single units into three classes
that were previously identified by Onorato et al. in the same
dataset: NW-Burst, NW-Nonburst (NW: Narrow waveform) and
BW (Broad Waveform) units. Previous studies suggest that NW-
Burst and BW units correspond to putative pyramidal cells,
whereas NW-Nonburst neurons correspond to putative fast-
spiking interneurons29,36,37. We found that firing rates were
positively correlated with frequency for all three classes, similar to
the MUA (Fig. 6d).

The model of Atallah and Scanziani posits that higher-
amplitude gamma cycles are initiated by a stronger bout of
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excitatory spiking. Thus, it is possible that higher firing rates in
the period of the LFP-trough to LFP-peak predict a longer
duration of the next half cycle. We examined this possibility by
computing the firing rate for the trough-to-peak period and

correlating it with the duration of the next peak-to-trough half-
cycle. Firing rate correlations were comparable to the same-cycle
correlations and remained strongly positive for one monkey and
non-significant for the other monkey (Supplementary Fig. 5).
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These results are not in agreement with the predictions of the
Atallah and Scanziani model.

We further wondered how spike synchrony was related to
gamma-cycle duration. To investigate this, we (1) computed the
duration of each gamma cycle, (2) identified all cycles of a certain
duration, (3) pooled all spikes that were fired in those cycles
together, and (4) computed spike-LFP phase-locking for each
pool of spikes. We quantified phase locking with the pairwise
phase consistency (PPC1)38 measure, which removes potential
biases due to spike count or firing history effects. We found
that spike-LFP phase locking was negatively correlated with
gamma frequency (Fig. 6c, d). The stronger spike-LFP phase
locking in longer gamma cycles may have been due to a stronger
spiking transient (at the “preferred” gamma phase), despite lower
average firing-rates. To examine this, we divided each gamma
cycle into eight non-overlapping phase-bins and computed
MUA firing rates for these different bins. We did this separately
for gamma cycles of different durations. As expected, longer
gamma cycles showed a stronger phase modulation of firing
rates (Fig. 7). However, we did not observe a stronger spiking
transient in longer gamma cycles. Instead, in longer cycles, there
was a stronger suppression of firing at the “non-preferred”
gamma phase.

Gamma modeled by a damped harmonic oscillator driven by
stochastic noise. We observed that correlations between gamma-
cycle amplitudes and durations in awake macaque V1 are sub-
stantially weaker than reported by Atallah and Scanziani. Fur-
thermore, the relation of instantaneous firing rate with gamma
cycle duration, in particular the lack of a strong excitatory bout at

the onset of larger gamma cycles, is inconsistent with the model
of Atallah and Scanziani. We thus wondered if a different model
could explain our observations.

As a starting point for developing such a model, we used our
observation (Supplementary Fig. 3) that positive correlations
between gamma-cycle amplitudes and durations were also
present for signals generated by the stationary AR model that
we fitted to the LFP data (AR containing 50–100 linear terms).
This observation was surprising for two reasons: (1) In an AR
model, all variability in amplitude and duration is due to
stochastic fluctuations in the innovation term (white noise); (2) In
the AR model, all the interaction terms are linear (i.e. x[t] is a
linear function of past values of x[t] plus white noise). To
generate oscillatory behavior in an AR model, the minimum
number of parameters that is required is two (AR(2)) (Supple-
mentary Note 1). Further below we will show (see Supplementary
Note 1) that AR(2) models can be interpreted as linear E-I circuits
driven by stochastic drive. The characteristic behavior of an
AR(2) can be described by its eigenvalues. For complex
eigenvalues, the AR(2) model corresponds to a linear, damped
harmonic oscillator that is stochastically driven (forced) by white
noise. The strength of the oscillation is controlled by the
magnitude of the eigenvalue (which needs to lie within the unit
circle for the system to be stable) (Fig. 8a and see Supplementary
Note 1). To directly compare AR(2) models to the LFP gamma
oscillations, we fitted AR(2) models to the LFP power spectrum
(see Methods). We found that AR(2) model fits could accurately
reproduce the LFP power spectra in the gamma-frequency range
(Fig. 8b), with eigenvalue magnitudes between approximately
0.97 and 0.995 (Fig. 8c), indicating that V1 gamma oscillations
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were close to criticality (note that AR(2) are unstable with
eigenvalue magnitudes above 1). The phase-plane of an AR(2)
model, obtained by examining the real and imaginary component
of the analytical signal obtained via the Hilbert transform,
exhibits a focus at the center of the phase plane with stochastic
drive perturbing the equilibrium and causing damped oscilla-
tions. LFP data exhibited a similar phase-plane structure with a
focus in the center (Fig. 8d, e).

Given the similarities between the spectral features of LFP and
AR(2) data, we wondered whether the AR(2) model would
produce positive correlations between gamma-cycle amplitudes
and durations that are similar to the LFP data (note that the AR
models investigated in Supp. Fig. 3 had 50–100 linear terms). We
generated time series based on the AR(2) model and applied our
method to detect gamma half-cycle amplitudes and durations. In
these synthetic AR(2) signals, we found positive correlations
between amplitudes and durations (Fig. 9a). For the same range
of eigenvalue magnitudes, these correlations were comparable to
the ones found in the V1 LFP data. Hence, positive correlations
between gamma-cycle amplitudes and durations can be repro-
duced by a linear AR(2) model. Like the LFP data, AR(2) models
also showed a non-monotonic relationship between gamma-cycle
amplitude and duration and a roughly symmetric cycle-frequency
distribution (Supplementary Fig. 6b). The standard deviation in
gamma-cycle durations in the AR(2) model (~12 Hz for an

eigenvalue magnitude of 0.987, which is the median across LFP
channels and stimulus conditions) matched well with the
standard deviation in gamma-cycle durations for the LFP data
(Supplementary Fig. 7; estimates ranged from 10 to 12.5 Hz, see
Methods section).

The AR(2) model makes several additional predictions:
(1) It predicts that correlations between gamma-cycle ampli-

tudes and durations should be smaller for conditions or channels
in which gamma oscillations are on average stronger (Fig. 9a). We
tested this prediction as follows: We first fitted an AR(2) model to
the LFP spectra separately for each channel and condition, and
determined the eigenvalue of the AR(2) fits (see Methods
section). For the same LFP data, we then computed the
amplitude-duration correlations, similar to Fig. 4. We then
regressed the amplitude-duration correlation onto the eigenvalue
magnitudes of the AR(2) fits (Fig. 9b). We found that, as
predicted, amplitude-duration correlations decrease as a function
of the eigenvalue magnitude. Together, these findings indicate
that a simple AR(2) model predicts the observed amplitude-
duration correlation and its negative dependence on average
oscillation strength, as well as the joint amplitude-duration
distribution.

(2) It predicts that amplitudes should be highly correlated
across gamma cycles, i.e. there should be a very high
autocorrelation of the gamma-cycle amplitude. This amplitude
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autocorrelation should be higher when gamma oscillations are on
average stronger (Fig. 9c). We determined the amplitude
autocorrelation by detecting the amplitude of all detected half-
cycles in the LFP data. We then computed the autocorrelation
between the amplitude of a given half-cycle with the amplitude of
the previous and succeeding half-cycles. We found very high
autocorrelations in half-cycle amplitude that were comparable to
the ones observed in the AR(2) time series (Fig. 9d). Furthermore,
as predicted, the amplitude autocorrelation was an increasing
function of the eigenvalue magnitude (Fig. 9e). To rule out that
the high amplitude correlations resulted from using half-cycles,
we repeated this analysis on full cycles, and found essentially the
same result (Supplementary Fig. 8).

(3) It predicts that gamma-cycle durations should be weakly
correlated across gamma cycles, especially for strong gamma
oscillations (Fig. 9f and Supplementary Fig. 9a). We computed
autocorrelations based on the duration of all detected half-cycles
in the LFP data. As predicted, the autocorrelation of the half-cycle
durations was a decreasing function of the eigenvalue magnitude
(Supplementary Fig. 9c). Yet, the autocorrelations of half-cycle
durations were consistently negative (Supplementary Fig. 9b, c),

different from the autocorrelations in the AR(2) time series
(which were positive or close to zero). This feature was likely due
to asymmetric wave shapes of gamma cycles, which may perhaps
reflect a difference in the time constants of the AMPA and GABA
currents that generate the LFP and contribute to different parts of
the gamma cycle. To avoid the potential influence of cycle
asymmetry, we therefore repeated our analysis for full-cycle
durations. We found that, as predicted, the autocorrelations of the
full-cycle duration were positive but close to zero (bootstrap
mean = 0.041; bootstrap SEM= 0.0038) (Fig. 9f–h) and that the
autocorrelations were a decreasing function of the oscillation
strength. In essence, this means that for strong oscillations, the
deviation of the duration of the current gamma cycle from the
mean gamma-cycle duration is not predictive of the deviation of
the next gamma cycle.

Interpretation of AR(2) model and amplitude-duration cor-
relations. Our results demonstrate that cycle-by-cycle dynamics of
gamma oscillations are well reproduced by AR(2) models with
complex eigenvalues. It remains unclear why neuronal interactions
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between excitatory and inhibitory neurons in the local circuit
would produce dynamics that resemble damped harmonic oscil-
lators driven by noise. In the Supplementary Note 1, we demon-
strate that AR(2) models can be written as a linear E-I circuit, by
rewriting them as a system of two first-order stochastic difference
equations with two populations (called “I” and “E”) driven by
external noise (which could e.g. correspond to stochastic inputs
from the LGN)

I½t� ¼ vieE½t � 1� þ veiI½t � 1� þ ε½t�
E½t� ¼ veeE½t � 1� þ veiI½t � 1� þ ε½t� ð1Þ

If the AR(2) eigenvalues are complex conjugates, then the inter-
action terms vei vie < 0, i.e. the two state-variables (named I and E)
always have opposite interaction weights (see Supplementary
Note 1). Furthermore, the E population will always exhibit a phase
lead over I. Given certain choices of the weight matrix V, this linear
E-I circuit can reproduce a balanced E-I regime and a typical delay
of E over I by a few ms29,30,39,40. In the Supplementary Note 1, we
show how E and I can be estimated as a linear combination of the
signal (x[t], x[t− 1]) through a transformation matrix A which
corresponds to a weight matrix V (Supplementary Fig. 10, Sup-
plementary Note 1 Supplementary Fig. 14). For example, if we let
E[t] = x[t]− 1.1 x[t− 1] and I[t] = x[t]− 0.86x[t− 1], then the
LFP has, as expected, opposite weights from E (−3.4) and I(+4.4),
and the system exhibits E-I balance with a small phase-lead of E
over I of 2.3 ms. In Supplementary Note 1 (Supplementary Fig. 13),
we illustrate the behavior of the E and the I population for an
AR(2) model with comparable eigenvalues to our data. We also
simulated neuronal spikes based on inhomogeneous Poisson pro-
cesses modulated by the E-variable in the AR(2) model and found
that this simulation recapitulated the dependence of spike syn-
chrony on cycle-duration (Supplementary Fig. 11).

Discussion
Circuits of excitatory and inhibitory neurons can generate
rhythmic activity in the gamma frequency-range (30–80 Hz).
Individual gamma-cycles show ample spontaneous variability in
amplitude and duration. The mechanisms underlying this varia-
bility are not fully understood. We recorded local-field-potentials
(LFPs) and spikes from awake macaque V1, and developed a
noise-robust method to detect gamma-cycle amplitude and
duration. This method circumvents several problems that arise
due to band-pass filtering and peak/trough detection and allowed
us to analyze the precise way in which amplitude and duration
vary between gamma cycles, and how this variation relates to
neuronal spiking activity. Our analyses establish several proper-
ties of gamma-oscillatory dynamics in macaque V1:

(1) The amplitude and duration of individual gamma cycles
showed a weak but positive correlation (Spearman’s rho= 0.199).

(2) Correlations between amplitude and duration were weaker
for channels and conditions in which gamma oscillations were on
average stronger.

(3) Gamma-cycle amplitude was strongly positively auto-
correlated across cycles, especially for gamma oscillations that
were on average stronger.

(4) Gamma-cycle duration was very weakly autocorrelated
across gamma cycles, especially for gamma oscillations that were
on average stronger. Thus, the deviation of the duration of the
current gamma cycle from the mean gamma-cycle duration is not
predictive of the deviation of the next gamma cycle.

(5) Longer gamma cycles were associated with stronger spike-
field phase-locking (synchrony), but lower firing-rates, and were
not accompanied by stronger, transient spiking activation.

We showed that the first four properties can be reproduced by
random fluctuations in a system with resonance: A damped

harmonic oscillator driven by stochastic noise (AR(2) model with
complex roots). This model can be accurately fitted to V1 LFP
data and is equivalent to a basic, linear E-I circuit driven by
stochastic noise. Note that the idea that brain rhythms can be well
modeled as damped harmonic oscillators was introduced many
decades ago by Walter Freeman and others41,42.

Atallah and Scanziani previously reported a strong positive
correlation (r= 0.61) between gamma-cycle amplitude and
duration in rat hippocampus. Here, we demonstrate that these
positive correlations can arise due to the employed analysis
method and the presence of noisy fluctuations in the signal
(Fig. 2d, g). To avoid this problem, we developed an algorithm for
the detection of gamma-oscillatory epochs, i.e. periods in the LFP
dominated by gamma oscillations. Correlations computed for
these periods remained positive, but were substantially weaker
(Spearman’s rho= 0.199; comparable result for Pearson’s r)
compared to Atallah and Scanziani24. Our analyses revealed
several problems in the detection of gamma-cycle amplitude and
frequency, due to the presence of non-stationarities in the LFP,
and filter-generated smearing between adjacent data points in the
time domain. This does not mean that our method detects the
“ground-truth” gamma-cycle amplitude or duration: these
quantities do not describe statistical properties that can be esti-
mated, in contrast to quantities like the power spectral density. In
a damped harmonic oscillator driven by noise, the notion of a
“cycle” becomes fuzzy for low amplitudes: fluctuations become
noise-driven, and the Hilbert-transform can yield negative fre-
quencies, i.e. phase slips. For this reason, our cycle-detection
method explicitly rejects epochs with phase slips as in43.

There are several points of debate about the mechanisms of
gamma oscillations. First, it remains unclear in which circuits, and
under which conditions, gamma oscillations can be generated, and
whether they primarily rely on I-I interactions (ING: Interneuron
Network Gamma) or E-I interactions (PING)3,6,25–29. Several studies
have observed a delay between E and I neurons (or intracellular E/I
currents), consistent with the PING mechanism29,39,40,44,45. How-
ever, not all studies find such a phase delay22,46,47. Moreover, both
PING and ING models can produce a wide range of dynamics
depending on the specific parameter settings28. Second, the relative
contributions of Somatostatin-positive (SSt+ ) and Parvalbumin-
positive (PV+ ) interneurons remain unclear6,48: Whereas most
theoretical and experimental studies support a general role of PV+
interneurons in generating gamma oscillations, some circuits like
mouse V1 exhibit oscillations around 30Hz which may depend on
SSt+ interneurons48. However, gamma oscillations in primate V1
have peak frequencies up to 70–80Hz, and it is unlikely that these are
mediated by SSt+ interneurons given the relatively long membrane
time constants of SSt+ interneurons and the lack of temporally
precise SSt+ responses to inputs from principal cells49. Third, in
primate and cat V1, there exist specialized excitatory neurons that do
not exist in mouse V1 and that may play an important role in
generating high-amplitude gamma oscillations30,36.

Here, we show that many features of gamma-oscillatory
dynamics in awake macaque V1 are predicted from a stationary
model containing only linear dynamics. In this model, oscillations
emerge from perturbations by stochastic drive. It is often assumed
that variability in gamma-cycle amplitude and duration results
from non-linear dynamics or non-stationarities in the underlying
signal, e.g. due to eye movements21 or cross-frequency
coupling50. However, we show that spontaneous variability in
gamma-cycle amplitude and duration in monkey V1 is consistent
with a stationary AR(2) model, which is equivalent to a linear E-I
circuit driven by stochastic inputs. To produce amplitude-
duration correlations, this model does not require the presence
of a strong, transient bout of excitatory activity to produce long
gamma cycles, as was supposed by the non-linear E-I model of
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Atallah and Scanziani, but which was not observed in our data
(Fig. 7). Rather, our analyses indicate that correlations between
amplitude and duration result from filtering random fluctuations
by a damped harmonic oscillator. Given that the expected velocity
in the phase-plane of the AR(2) model is constant and inde-
pendent of radius, correlations between amplitude and duration
arise from the interaction between stochastic drive and the linear
deterministic dynamics of the system.

We have shown that gamma dynamics in macaque V1 are well
reproduced by damped harmonic oscillators driven by noise,
which are equivalent to linear E-I circuits. Our model thereby
connects two lines of research on gamma dynamics: On the one
hand models in which gamma results from E-I interactions51,52.
On the other hand, the model of gamma as filtered white noise4,
which, like the AR(2) model, is also a stationary signal model that
reproduces the power spectrum of the signal. (Note that while the
AR(2) is a form of filtered white noise, the reverse is not neces-
sarily the case). Burns et al. showed that the distribution of
gamma-burst durations can be reproduced by generating filtered
white-noise, i.e. a mix of sinusoids with random phases and the
same amplitude as the LFP power spectrum (which is different
from an AR(p) model)4. Further, by computing auto-coherence
over the wavelet-transform amplitudes of the LFP signal, Burns
et al.53 found an auto-coherence of gamma over time with a
resultant length of 0.3–0.4, similar to auto-coherence values
observed in filtered white noise. Here we performed a related
analysis with a cycle-by-cycle detection method that avoids
spurious correlations due to windowing or band-pass filtering.
We found that the correlation between the current and the next
cycle-duration is close to zero (bootstrap mean= 0.041), and
approaches zero for strong oscillations. We find that the standard
deviation in gamma-cycle frequency is around 10 Hz even for
very strong oscillations (with eigenvalue magnitudes ~0.99) (note
that this only holds for the time periods exhibiting clear cycles).

The stochastic nature of gamma oscillations may
have implications for their putative role in inter-areal com-
munication (refs. 54–57; see Supplementary Discussion), neural
representation and working memory. Our findings on sto-
chasticity in the amplitude and duration of individual gamma
cycles can inform the debate regarding whether neural repre-
sentations are persistent or transient in nature. There is evi-
dence that fluctuations in gamma-amplitude, frequency and
phase are accompanied by fluctuations in, neuronal tuning,
neuronal correlations and behavioral performance. Shortened
reaction times in a given trial can be predicted by enhanced
gamma power in human visual cortex58, enhanced gamma
synchronization in macaque V459 and enhanced gamma
coherence between macaque V1 and V460. Further evidence
shows that inter-areal information transmission fluctuates with
the relative gamma phase60–62. In terms of local information
processing, both orientation selectivity and noise correlations of
V1 firing rates fluctuate as a function of gamma phase and
amplitude63. These stochastic fluctuations in sensory informa-
tion processing and transmission might indicate the need for
relatively long integration times for stable coding and com-
munication performance5, or alternatively might reflect that
information processing occurs not in a persistent but in a
rhythmic manner13. The stochastic nature of gamma also fea-
tures in a recent debate on the persistent versus transient nature
of working memory representations. Recent evidence shows
that working memory representations become transiently
activated during short gamma bursts11. A possible reconcilia-
tion between the persistent/transient perspectives might be that
there is persistent encoding of working memory information in
the underlying statistics of the population signals, but that
working memory information is predominantly transmitted

during oscillatory bursts which can naturally emerge due to
stationary, stochastic fluctuations. Interestingly, damped har-
monic oscillators exhibit memory in the sense that the past
sequence of noise inputs is stored in the ongoing amplitude of
the signal. Hence, when oscillations are strong, they would
“store” potential energy that can be released in the form of a
damped oscillation, like a mass on a spring. During these
oscillatory bursts, the system might be primarily governed by
deterministic dynamics releasing energy, whereas during low-
amplitude fluctuations, the system trajectories might pre-
dominantly follow external inputs.

It remains unclear whether our simple model of a damped
harmonic oscillator driven by noise reproduces all features of
gamma-oscillatory dynamics; it is possible that more complex
models are needed in order to do so, and our model primarily
models spontaneous fluctuations in gamma dynamics. However,
it is quite surprising that several aspects of the gamma oscillations
in the collective, high-dimensional dynamics of millions of V1
neurons, measured at the macro/meso-scale, are well predicted
from a model that is linear and contains only two parameters.

Methods
Subjects. We analyzed data from a total of 6 adult macaque monkeys (macaca
mulatta), referred to as monkey H, I, J, L, P, and T. Monkeys I and L are/were
female, the others male. The experiments were approved by the responsible
regional or local authority, which was the Regierungspräsidium Darmstadt, Ger-
many, for monkeys H, I, J, L, and T, and the ethics committee of the Radboud
University, Nijmegen, Netherlands, for monkey P.

Recordings. We used different recording procedures and stimulus paradigms for
the different monkeys, and will describe these separately for the different monkeys.

Task. All monkeys performed a passive fixation task. The specific details of the task
performed by monkeys I and P were as follows: Monkeys initiated a trial by
depressing a lever (monkey I) or touching a bar (monkey P), which triggered the
appearance of a fixation point, and then brought their gaze into a fixation window
around the fixation point. Monkeys were required to fixate on the fixation point,
which was centered on a gray background, after which a stimulus was presented. If
they kept their gaze within the fixation window as long as the stimulus was pre-
sented, they were given a juice reward after the release of the lever/bar following
stimulus offset. Monkeys H, J, L, and T performed a similar task, with the initia-
tion/termination of the trial being solely dependent on the acquisition/release of
fixation (i.e. not dependent on pressing a lever or touching a bar). Further details of
this version of the task are described in Peter et al.33 for monkey H, and in Lima
et al.19 for monkeys J and L. For all monkeys, fixation windows ranged between 0.5
and 1.2 degrees radius.

Recordings (electrodes, reference). For monkey H, recordings were done with
CerePort (“Utah”) arrays (64 micro-electrodes; inter-electrode distance 400 μm, tip
radius 3–5 μm, impedances 70–800 kΩ, half of them with a length of 1 mm and half
with a length of 0.6 mm, Blackrock Microsystems). A reference wire was inserted
under the dura toward parietal cortex. Further details are reported in33. For
monkey I, a semi-chronic microelectrode array micro-drive was implanted over
area V1 of the left hemisphere (SC32-1 drive from Gray Matter Research; 32
independently movable glass insulated tungsten electrodes with an impedance
range of 0.5–2MΩ and an inter-electrode distance of 1.5 mm, electrodes from
Alpha Omega). We used the micro-drive chamber as the recording reference. For
monkeys J and L, recordings were performed with 2–10 microelectrodes, made of
quartz-insulated, tungsten-platinum material (diameter: 80 μm; impedances
between 0.3 and 1MΩ; wire from Thomas Recording). These were inserted
independently into the cortex via transdural guide tubes (diameter: 300 μm; Ehr-
hardt Söhne), which were assembled in a customized recording device (designed by
S.N.). This device consisted of 5 precision hydraulic micro-drives mounted on an
X-Y stage (MO-95, Narishige Scientific Instrument Laboratory, Japan), which was
secured on the recording chamber by means of a screw mount adapter. Inter-
electrode distance ranged between 1 and 3 mm. We used the micro-drive chamber
as the recording reference. Further details are reported in Lima et al.19. For monkey
P, we recorded neuronal activity with a micro-machined 252-channel electro-
corticogram (ECoG) electrode array implanted subdurally on the left
hemisphere64,65. We used a silver ball implanted over occipital cortex of the right
hemisphere as the recording reference. For monkey T, we recorded neuronal
activity with a micro-machined 252-channel ECoG electrode array implanted
subdurally over areas V1 and V4 of the left hemisphere (inter-electrode distance
1400 μm; electrode diameter 400 μm, IMTEK & BCF, University of Freiburg)65. We
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used an electrode adjacent to the lunate sulcus as a recording reference for the
section of the array covering area V1.

Recordings (acquisition, filtering). For monkeys H, I, and T, we acquired data
with Tucker Davis Technologies (TDT) systems. Data were filtered between 0.35
and 7500 Hz (3 dB filter cutoffs) and digitized at 24,414.0625 Hz (TDT PZ2 pre-
amplifier). For monkeys J and L, we obtained spiking activity and the LFP by
amplifying 1000 times and band-pass filtering (0.7–6.0 kHz for MUA; 0.7–170 Hz
for LFP) with a customized 32-channel Plexon pre-amplifier connected to an
HST16o25 headstage (Plexon Inc., USA). Additional 103-fold signal amplification
was performed by onboard amplifiers (E-series acquisition boards, National
Instruments, USA). For monkey P, we acquired data with a Neuralynx system.
Data were amplified 20 times, high-pass filtered at 0.159 Hz, low-pass filtered at
8 kHz, and digitized at 32 kHz by a Neuralynx Digital Lynx system.

Receptive field mapping/eccentricities. Receptive fields (RFs) were mapped with
either bar stimuli (refs. 19,33; monkeys H, I, J, L), patches of moving gratings
(refs. 64; monkey P) or red dots (monkey T). The signal used for RF mapping was
multi-unit activity (MUA) for monkeys H, I, J, L, and the LFP gamma power for
monkeys P and T. For monkeys J and L, we recorded neuronal activity from the
opercular region of area V1, leading to RF-center eccentricities of 2–3 deg, and
occasionally from the superior bank of the calcarine sulcus, leading to RF-center
eccentricities of 10-13 deg. For monkey H, RF-center eccentricities ranged between
5.2 and 7.1 deg (median RF-center eccentricity 6.2 deg). For monkey I, RF-center
eccentricities ranged between 2.6 and 6.7 deg (median RF-center eccentricity
4.5 deg). For monkey P, RF-center eccentricities ranged between 3 and 5.7 deg
(median RF-center eccentricity 4.6 deg). For monkey T, RF-center eccentricities
ranged between 3.1 and 7.1 deg (median RF-center eccentricity 3.8 deg).

Eye position monitoring. For monkeys H, I and T, eye movements and pupil size
were recorded at 1000 Hz using an Eyelink 1000 system (SR Research Ltd.) with
infrared illumination. For monkeys J and L, we monitored the eye position with a
scleral search coil system (DNI, Crist Instruments, USA; sampling rate of 500 Hz).
For monkey P we monitored eye position with an infrared camera system (Thomas
Recording ET-49B system) at a sampling rate of 230 Hz. We used a standardized
fixation task in order to calibrate eye signals before each recording session.

Behavioral control and stimulus presentation. Stimulus presentation and
behavioral control was implemented as follows: The software toolbox ARCADE
(https://gitlab.com/esi-neuroscience/arcade) was used for monkeys H, I, and T;
Custom LabVIEW code (Lab-VIEW, National Instruments, USA) was used for
monkeys J and L; The software toolbox CORTEX (dally.nimh.nih.gov/index.html)
was used for monkey P.

Monkeys H and I were presented with full-screen uniform color surfaces.
Surface color varied across trials according to a pseudo-random sequence. For our
analyses, we used the hue that elicited the strongest gamma oscillations (monkey H
RGB: 149 99 0; monkey I RGB: 255 0 0). In a separate session, monkey I was also
repeatedly presented with a full-screen drifting square-wave red-and-green grating
of a fixed initial phase and drift-direction (RGB for red 255 0 0 and green 0 255 0;
spatial frequency: 1.5 cycles/degree; temporal frequency 2 Hz). Monkeys J and L
were presented with large drifting square-wave black-and-white gratings (spatial
frequencies: 1.25–2 cycles/degree; temporal frequencies: 1.4–2 Hz) and plaid
stimuli. Only the gratings were used for our analyses. The gratings had a diameter
of 8 degrees of visual angle and were positioned at the average of the RF centers of
the recorded MUA. In each trial, the direction of the grating drift was randomly
chosen from 16 directions (in steps of 22.5 degrees). Monkey P was repeatedly
presented with a full-screen drifting square-wave black-and-white grating of a fixed
initial phase and drift-direction (spatial frequency: ~1 cycle/degree; temporal
frequency ~1 Hz). Monkey T was presented with full-screen uniform color
surfaces, with the color changing across trials according to a pseudo-random
sequence. For our analyses, we used two hues that elicited the strongest gamma
oscillations (RGB: 255 0 0 and 0 0 255). In separate sessions, monkey T was also
presented with full-screen drifting square-wave colored gratings of pseudo-random
initial phases and drift-directions. For our analyses, we used the gratings that
elicited the strongest gamma oscillations (red-green RGB: 255 0 0 and 0 255 0 and
blue-yellow RGB: 0 0 255 and 255 255 0; spatial frequency: 1.5 cycles/degree;
temporal frequency 2 Hz). For monkeys H, I and T, stimuli were presented on
120 Hz LCD monitors66, without gamma correction. For monkeys J, L and P,
stimuli were presented on CRT monitors (100-120 Hz), after gamma correction.

Data analysis. All analyses were done in MATLAB (The MathWorks) using
custom scripts and the FieldTrip toolbox (www.fieldtriptoolbox.org67). The ana-
lyses were done only on trials with correct task performance. In monkeys P and T,
we selected the 25% electrodes/sites over area V1 with the strongest visually
induced gamma band activity, because the grids covered a relatively large region of
retinotopic space and contained electrodes that were poorly driven by the visual
stimulus. In monkeys H, I, J and L, we analyzed all visually driven electrodes. In all
monkeys except for monkey T, we analyzed LFP signals that were recorded relative
to the common reference signal (described above). For monkey T, we calculated

local bipolar derivatives between LFPs from immediately neighboring electrodes.
i.e., differences (sample-by-sample in the time domain), similar to previous
studies64. This was done because the global references in monkey T were posi-
tioned over V1 and V4 in the same hemisphere.

Preprocessing. For monkeys H, I, and T, LFPs were obtained from the broadband
signal after low-pass filtering (sixth order Butterworth filter with a corner fre-
quency of 500 Hz), high-pass filtering (third order Butterworth filter with a corner
frequency of 2 Hz for monkey T and 4 Hz for monkeys H and I) and down-
sampling to 2034.51 Hz. For monkeys J and L, LFPs were filtered between 0.7 and
170 Hz (hardware-filter, described above) and down-sampled to 1 kHz. For mon-
key P, we obtained LFP signals by low-pass filtering at 200 Hz and down-sampling
to 1 kHz. In addition, for monkey P, we removed powerline artifacts at 50 Hz and
its harmonics with a digital notch filter.

Segmenting data into epochs, and calculation of power and TFR. To estimate
the LFP power spectra in the stimulus and baseline periods (Figs. 1b, c, g, h, 5, and
6a–c, and Supplementary Figs. 3b and 4), we used the following procedure: Power
spectra were estimated separately for the pre-stimulus period and the stimulation
period. The pre-stimulus period was the time between fixation onset and stimulus
onset. During the pre-stimulus period, monkeys fixated on a central dot on a gray
screen, and there was no other stimulus presented. For monkeys H, I, P, and T, the
pre-stimulus and stimulation periods were of variable length across trials. We kept
data corresponding to the pre-stimulus and stimulation period with the minimum
length (monkey H: baseline 0.3 s/stimulation 1.5 s; monkey I: baseline 0.5 s/sti-
mulation 2 s; monkey P: baseline 0.3 s/stimulation 2.3 s; monkey T: baseline 1.1 s/
stimulation with full-screen gratings 2.8 s/stimulation with full-screen uniform
color surfaces 3.2 s). For monkeys J and L, the pre-stimulus and grating-stimulation
periods had a stable duration across trials within a session but their duration varied
between sessions. All of the available pre-stimulus and grating data were analyzed
for those monkeys (baseline 0.8–1 s/stimulation 2–2.4 s). The power spectral ana-
lysis was based on epochs of fixed lengths. Therefore, the described task periods
were cut into non-overlapping epochs. We aimed at excluding data soon after
stimulus onset (“event”) to minimize the influence of the stimulus-onset related
event-related potential on our analyses. Therefore, periods were cut into non-
overlapping epochs, starting from the end of the period and stopping before an
epoch would have included data ~0.5 s after those events. For Fig. 1b, c, g, h, the
estimation of power spectra was based on epochs of 0.5 s length; for Figs. 5 and
6a–c and Supplementary Figs. 3b and 5, power spectra were based on epochs of
0.25 s. Data epochs were Hann tapered, to achieve a fundamental spectral reso-
lution (Rayleigh frequency) of 2 Hz (4 Hz for Figs. 5 and 6a–c and Supplementary
Figs. 3b and 5), and then Fourier transformed. The gamma-band power spectra
used for the AR(2) fits (Figs. 8b, c and 9b, e, h and Supplementary Figs. 8b and 9c),
the power spectra of synthetic AR(2) signals (Fig. 8a), and the joint distribution of
gamma-cycle amplitude and duration (Supplementary Fig. 6) were based on rec-
tangular windows of 1 s, in order to ensure minimal spectral smearing, and thus a
more accurate fit. For the time-frequency analysis of power, we used window
lengths of ±2.5 cycles per frequency which were slid over the available data in steps
of 1 ms. Power during the stimulation period was normalized to the pre-stimulus
baseline period, separately for each channel, in the following manner: Power per
frequency and per trial was calculated as described above. Power calculated for the
pre-stimulus baseline period was then averaged across trials. Finally, trial-wise
normalized power was calculated for the stimulation period by subtracting the
average pre-stimulus spectrum and then dividing by it.

Spike sorting. Single units were isolated through semi-automated spike sorting30.
First, we performed semi-automatic clustering with the KlustaKwik 3.0 software.
The energy of the spike waveform and the energy of its first derivative were used as
features in this procedure. A candidate single unit was accepted if the corre-
sponding cluster was clearly separable from the noise clusters, and if the inter-
spike-interval distribution had a clear refractory-period. This was done manually
with the M-Clust software. In addition, we used the isolation distance (ID68); as a
measure of cluster separation. The ID of a candidate single unit had to exceed 20 in
order for it to be included in our analyses. The median ID was 25.05. This pro-
cedure led to the isolation of 100 single units. For each isolated single unit, we
computed the peak-to-trough duration of the average AP waveform. Single units
with long (>0.235 ms) and short (<0.235 ms) peak-to-trough durations were named
“broad-waveform” (BW) and “narrow-waveform” (NW) neurons, respectively.
Broad-waveform neurons corresponded to 29% of the single unit population.

Initial estimation of gamma-cycle amplitude and duration (cf. Atallah and
Scanziani). For our initial analyses of individual gamma cycles, we implemented
the algorithm as described by Atallah and Scanziani for data from awake freely-
moving rats. In short, we first low-pass filtered the LFP by using a 40 ms moving
average filter and then subtracted this filtered signal from the original time series
(Experimental Procedures and Supplemental Experimental Procedures of Atallah
and Scanziani), which effectively corresponds to a high-pass filter with a corner
frequency at ~20 Hz. The resulting signal was further band-pass filtered in the
range of 5–100 Hz with a 3rd order, two-way Butterworth filter. Gamma-cycle
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peaks and troughs were then defined as local maxima and minima, respectively.
Furthermore, gamma-cycle amplitudes were defined as the difference between the
voltage of a given peak and its subsequent trough. Similarly, gamma-cycle dura-
tions were defined as the interval between a given peak and it subsequent peak.
This analysis was done in segments of the filtered signal which displayed high
power in the individual gamma frequency range of each dataset (peak gamma
frequency ±20 Hz). These segments were extracted in the following way: a time-
power representation of each trial was calculated with 5 discrete prolate slepian
sequences and windows of 100 ms which were slid over the available data in steps
of 25 ms. Gamma episodes were defined as segments of the resulting time-series
which lasted for more than 100 ms and had power that exceeded a threshold. This
threshold was calculated separately for each trial as the difference between the
mean of the time-power representation and its standard deviation.

Generation of colored noise. In Fig. 2g, we analyzed the correlations obtained
with the Atallah-Scanziani method for colored noise. We generated noise with
power spectra following a 1/fn function, where f denotes frequency and n assumes
11 equally spaced values between, and including, 0 (corresponding to white noise)
and 2 (corresponding to Brownian noise). This was done in the following manner:
(i) 1000 white noise traces containing 106 samples were generated for each n. (ii)
Each trace was Fourier transformed. (iii) The complex coefficients of the positive
frequencies in the resulting spectra were multiplied by the 1/fn function. (iv) A
synthetic spectrum was constructed by concatenating the above complex coeffi-
cients with the conjugate of their flipped version. (v) The resulting spectrum was
inverse Fourier transformed to obtain time series.

Improved estimation of gamma-cycle amplitude and duration. We developed
an improved method to extract gamma-cycle amplitude and frequency from the
LFP signals as follows:

(1) We computed the Hilbert-transform of the broadband LFP signal to obtain
the analytic signal and derive the time-resolved phase from it. We used the
broadband signal, because band-pass filtering creates dependencies between voltage
values across time points, and can transform transient, non-oscillatory deflections
into rhythmic events.

(2) We detected gamma cycles as follows: First, we detected all the zero-
crossings of the phase. Such phase zero crossings occur in the neighborhood of
peaks and troughs in the original LFP signal. For each k-th zero-crossing, we
examined whether the angular velocity of the phase was positive for all time points
between the k− 1-th to the k+ 1-th zero-crossing (similar to Muller et al.69). If
this was not the case, then there was a negative “phase-slip” in which the
instantaneous frequency became negative, and the respective zero crossing plus/
minus two neighboring zero crossings were discarded. Negative instantaneous
frequencies make the interpretation of the instantaneous frequency and amplitude
ambiguous, and are typically accompanied by small peaks/troughs in the LFP
signal. This violates our model of the gamma oscillation as a signal with a positive
frequency which fluctuates over time, y(t) = A(t) * cos (ω(t)*t + φ), where A(t)
and ω(t) are the instantaneous amplitude and frequency fluctuating over time.

If there was no negative phase-slip, then we identified gamma peaks by first
detecting negative-to-positive zero crossings in the phase of the analytic signal. For
each of these crossings, we then identified the nearest local maximum in the LFP
signal (Fig. 3d). Likewise, gamma troughs were identified by detecting positive-to-
negative zero crossings and identifying nearby local minima. Using the detected
gamma peaks and troughs, we then determined the gamma-cycle amplitude and
duration. To obtain estimates of gamma-cycle amplitude and duration with the
maximum attainable temporal resolution, we divided each gamma cycle into “half-
cycles”: The first half-cycle comprised the data segment from the trough to the
peak, and the second half-cycle from the peak to the trough. For each half-cycle,
amplitude was defined as the difference between the respective peak and trough,
and duration was defined as the corresponding time interval. For each detected
half-cycle, we thus obtained an amplitude and duration value. For comparison, we
also determined amplitude and duration for full gamma cycles. A gamma cycle
comprised the data from one peak to the next peak. Amplitude was defined as the
voltage difference between the first peak and the trough. Duration was defined at
the time between the two peaks.

Note that for the analysis of the relationship between individual gamma cycles
and spiking activity, we used a band-pass filter (3rd order, two-pass Butterworth,
with a pass-band of 40–90 Hz for monkey J and 25–55 Hz for monkey L). In this
case, we used an additional criterion to reject epochs of spurious oscillatory
activity30: We ran the same cycle-selection procedure on the pre-stimulus period,
in which narrow-band gamma-band oscillations are virtually absent. For the pre-
stimulus period, we obtained the mean μpre and standard deviation σpre of the
distribution of amplitudes. These amplitudes were measured as the peak-to-trough
distance of the gamma cycle. A cycle in the stimulus period with amplitude A was
only selected if (A− μpre)/σpre > 1:63 (which is equivalent to a one-sided T-test at
P < 0.05). We filtered the LFP with the purpose of increasing the number of
selected gamma epochs, considering that the analysis of unit firing rates and spike-
field phase-locking demands a relatively large amount of data. Note that we have
shown in Fig. 5 that the distributions of amplitude and frequency after band-pass
filtering are comparable to the distributions obtained without band-pass filtering.
In addition, the potential issues related to filtering only apply to the calculation of

correlations of amplitude and duration and not to the calculation of the correlation
of spiking strength and gamma frequency. This is due to the fact that filtering may
generate artificial correlations between the amplitudes and durations of deflections
of the same time series (explained further in the results section). The filter used on
the LFP is not used on the spiking activity. Thus, artificial correlations between
spiking and cycle-by-cycle frequency are not likely.

Amplitude and frequency values were extracted from selected gamma epochs of
a duration of at least two full cycles.

Computation of time-resolved correlations between amplitude and frequency.
In the case of our V1 recordings, we observed that gamma amplitude and cycle
duration progressively increased over time after the onset of a drifting grating
stimulus. (Fig. 1c, d). By contrast, after the onset of a uniform color surface, gamma
amplitude and duration progressively decreased and increased over time, respec-
tively (Fig. 1g, h). These changes with time after stimulus onset could contribute to
the correlation values between gamma-cycle amplitude and duration, if gamma
amplitude and duration values are concatenated across all trials and time points.
This would conceal the relationship between gamma-cycle amplitude and duration
due to intrinsic variability, by introducing a positive or negative correlation bias for
drifting gratings and uniform color surfaces, respectively.

We avoided these effects by using the following method: We calculated
correlations between gamma-cycle amplitudes and durations across all trials,
separately for each time point (at the respective sampling rate) after stimulus onset,
and subsequently averaged those correlation values over time points and
subsequently over recording sites. To enable this, we needed to define gamma-cycle
amplitudes and durations for each time point. Therefore, each time point (relative to
stimulus onset) was localized to the gamma half cycle (or full cycle), into which it
fell, and it was assigned the respective amplitude and duration of that half cycle (or
full cycle). For the calculation of correlations with one or multiple half-cycle (or full-
cycle) lags, correlations were calculated between amplitudes and durations shifted
relative to each other by the corresponding number of half-cycles (or full cycles).

In datasets containing more than one stimulus condition, correlation
coefficients were calculated separately for each condition and then averaged across
conditions.

As mentioned in the results section, the correlation analysis used the Spearman
correlation coefficient. Like in Atallah and Scanziani24, we found results to be
essentially identical for Spearman and Pearson correlation, when using their
method of determining gamma-cycle amplitude and duration. For the rest of our
analyses, we used exclusively the Spearman correlation coefficient.

Statistical significance of correlations. The statistical significance of auto- and
cross- correlations of gamma-cycle amplitudes and durations, and correlations
between AR(2)-fit eigenvalue-magnitudes and auto- or cross correlations of
gamma-cycle amplitudes and durations was assessed by means of a non-parametric
randomization approach. In this paragraph, we will describe this approach for the
cross-correlation of amplitudes and durations: The order of valid duration values
was randomly shuffled across trials, separately for each time-point. We then
computed surrogate Spearman’s correlation coefficients 1000 times as described
above for each dataset. Next, we performed a fit of a Gaussian distribution on the
1000 surrogate correlation coefficients. Empirical correlations were deemed sig-
nificant if they were 3 standard deviations larger or smaller than the mean of the
surrogate distribution. This procedure implements a non-parametric version of a
two-sided test with a p-value of ≈0.001.

To test if the mean correlation of gamma-cycle amplitudes and durations is
significantly different from zero across datasets, we applied a Student’s t-test. In
general, we prefer non-parametric randomization tests over parametric tests (like
the t-test). However, some analyses contained only four or five datasets, which
effectively precludes the application of non-parametric tests. Where possible, we
supplemented the t-test with a non-parametric statistical test (Figs. 2c, 4a, c, and
Supplementary Fig. 1a). Specifically, we calculated the mean correlation across
datasets for each possible combination of values that results after independently
inverting or maintaining the sign of each correlation value (i.e. a full permutation).
This led to a surrogate distribution of mean values to which the empirical mean
was compared for statistical significance. Mean correlations were deemed
significant if they were larger (smaller) than the top (bottom) 2.5 percentile of this
surrogate distribution.

Regression analysis. We performed regression analyses separately for gamma-
cycle amplitudes and durations with the Matlab function regress. As explained in
the results section, for each half-cycle, we regressed the amplitude value of the
ongoing half-cycle against the amplitude values of the previous and next half-cycle,
by using a least squares approach. We used the same procedure for half-cycle
duration values. This was done for each point after stimulus onset separately, and
by using all the amplitude and duration values across trials (for that time point).

For Fig. 4c, we first calculated the regression residuals for amplitude and
duration separately by predicting amplitude and duration from the previous and
next half cycle. We then computed the regression residuals for amplitude and
duration, separately for each time point. These residual values measured the extent
to which the amplitude or duration in the ongoing half-cycle was greater or smaller
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than predicted from the surrounding half-cycles, and thereby departed from slower
trends. We then computed the correlation between the regression residuals for
amplitude and duration, in the same way as described above.

Micro-saccade detection. We low-pass filtered vertical and horizontal eye posi-
tion signals by replacing each value with the average over itself ±15 ms. We then
computed the first temporal derivative of the signals to obtain the vertical and
horizontal velocities. We combined those values to obtain the eye speed irrespective
of the direction of eye movement. Per trial, we determined the SD of eye speed, and
any deviation >4 SDs and lasting for at least 30 ms was deemed a saccadic eye
movement. Saccadic eye movements that remained within the fixation window
were considered to be MSs.

AR. In Supplementary Fig. 3, we computed our correlations for data generated
through auto-regressive models with a power spectrum similar to the recorded LFP
data. An autoregressive (AR) model of order n represents each value in a time-
varying process as the linear sum of its n preceding values (each weighted by a
separate coefficient) and a stochastic term. This model can then be used to generate
a synthetic time series that has the same power spectrum as the original process,
but that is devoid of higher-order statistical properties such as slow temporal trends
or spectral cross-frequency dependencies. We modeled the LFP as an AR process of
a relatively high order (50 for monkeys J and P, whose analysis was based on a
sampling rate of 1000 Hz, and 100 for monkeys H, I, T, whose analysis was based
on a sampling rate of 2034.51 Hz). We did this by fitting a vector of AR coefficients
and a noise variance term with the Matlab function arfit, simultaneously to all the
trials of a given stimulus condition and independently for each recording site. For
our analyses, we only used the period of the trial starting at 250 ms after stimulus
onset, thereby omitting stimulus onset-related transient activity. These AR models
were then used to generate surrogate time series.

AR(2) Signal generation and model derivation. For the AR(2) model relation-
ship to E-I circuits we refer to Supplementary Note 1.

To generate AR(2) signals, we computed the AR(2) coefficients for a given
eigenvalue magnitude and oscillation frequency, using standard analytical
transformations. Generated time series were analyzed with the same cycle-
detection method as the LFP data. The only difference was that for the AR(2), we
did not divide the data into trials, and thus computed the correlation between cycle
amplitude and duration across all the cycles over all the time points (i.e. not across
trials for each time point separately). In order to compare the AR models to the
LFP data, we ensured that the model used a sampling frequency of 2035 Hz, similar
to the sampling frequency of most of our LFP datasets. For several analyses, we
correlated the eigenvalue-magnitude of the AR(2) fit to the LFP data, with several
correlation measures across LFP datasets, including the amplitude-duration
correlation, amplitude autocorrelation and duration autocorrelation. To ensure
that all preprocessing (sampling rate; filtering) was similar for these data, we only
included datasets with a similar sampling frequency of 2034.51 Hz.

AR(2) Model Fit to LFP data. We estimated the strength of gamma oscillations in
our LFP data as follows: (1) We computed gamma-band power spectra separately
for each channel and condition. The power spectra were based on rectangular
windows of 1 s, in order to ensure minimal spectral smoothing, and thus a more
accurate fit. (2) We then estimated the coefficients of equivalent AR(2) models by
minimizing the squared error in the gamma frequency-range (matlab function
fminsearch) between each LFP power spectrum and the following function:

Sðf Þ ¼ σ2z
1þ φ2

1 þ φ2
2 � 2φ1ð1� φ2Þ cosð2πf Þ � 2φ2 cosð4πf Þ

where S(f) is the power spectrum of the AR(2), σz is the standard deviation of this
power spectrum, f are frequencies in the gamma range, and φ1/φ2 are the AR(2)
coefficients (Fig. 8c). (3) We determined the eigenvalues of the equivalent AR(2)
models (Figs. 8b, c and 9b, e, h, and Supplementary Figs. 8b and 9c).

PPC. For the calculation of spike-LFP PPC, the gamma phase of each spike within a
gamma cycle was defined as t/T*2*π, where t was the time of the spike relative to
the start of the gamma cycle, and T was the duration of the gamma cycle. This
constitutes a linear phase interpolation. This used the improved Hilbert-based
definition of gamma half-cycles (cycles). The obtained spike phases from separate
trials were collected, and the average consistency of phases across these pairs was
estimated with the pairwise-phase-consistency metric (PPC)38,70, and more spe-
cifically its PPC1 variant70. Any potential bias due to differences in discharge rates
is removed by the pairwise computation. Only neurons that fired at least 50 spikes
were considered, because phase-locking estimates can have a high variance in cases
of low spike counts. We were not able to perform this analysis for single-unit
activity, due to the lack of a sufficient number of detected single unit spikes.

Computation of the cycle-based amplitude spectrum (CBAS) and cycle-
frequency distribution. For Fig. 5 and Supplementary Fig. 4 we computed the
cycle-based amplitude spectrum (CBAS) and the cycle-frequency distribution as

follows. Gamma half-cycle amplitude and duration values were extracted from the
LFP through the use of the previously described improved detection algorithm.
Values of gamma-half-cycle durations were converted into values of gamma-half-
cycle frequency (frequency being the inverse of duration). This was done separately
for each recording site and stimulus condition. Next, gamma half cycles were
assigned to their corresponding frequency bin, and for each frequency bin, the
average amplitude and the rate of incidence of that frequency were determined.

Note that the peak gamma-frequency varies across experimental subjects and
stimulus conditions. In order to compute averages across stimulus conditions and
monkeys, it is therefore necessary to align individual distributions to the power-
spectral peak in the gamma-frequency-range, separately for each stimulus
condition and dataset. We performed this alignment in the following way: The raw
trial-wise power spectra were estimated separately for each stimulus condition as
described above (see power), and from these spectra we determined the peak
gamma-frequency. In addition, this was done for the baseline-corrected power
spectra. The alignment of half-cycle amplitudes and frequency counts was then
performed around the resulting frequency. Specifically, half-cycle amplitude and
frequency count averages at ±20 Hz around the gamma peak were averaged across
stimulus conditions and datasets. Note that we analyzed datasets with different
sampling rates. This entailed that the range of detectable half-cycle frequencies (i.e.
sampling rate/(2*duration)) varied across different datasets and, depending on the
sampling rate, certain frequency bins were necessarily empty. In order to average
across datasets with different sampling rates, we therefore performed a linear
interpolation between normalized half-cycle amplitude values and frequency
counts, which were adjacent to empty bins.

Estimation of gamma cycle-frequency variability. Gamma-cycle frequency
variability was quantified as the standard deviation of the distribution of gamma-
cycle frequencies. This standard deviation was computed in two alternative ways:
first, we performed Gaussian fits on the cycle- frequency distributions of LFPs and
an AR(2) model (eigenvalue magnitude of 0.987, which is the median across LFP
channels and stimulus conditions). This approach yielded a standard deviation of
10.5017 and 11.7199 Hz for the LFP data, and 11.9724 Hz for the AR(2) model
(Supplementary Fig. 7). Second, we computed the standard deviation of gamma
cycle- frequencies in the LFP by using either individual pairs or triplets of adjacent
gamma cycles. In the analysis of gamma-cycle pairs we implemented Bessel’s
correction, where the variance between the cycle-frequency of adjacent cycle-pairs
is computed, this pairwise variance is averaged across cycle-pairs, and the final
estimate of the standard deviation is derived by the square root of this average. The
analysis of gamma-cycle triplets differed from the analysis of pairs only in that it
involved estimating the pairwise variance of the middle cycle of each triplet to the
mean of its two neighboring cycles (interpolation). Note that this analysis requires
further debiasing by a scalar which can be analytically proven to be exactly 2/3.
These analyses led to an estimate of 12.52 Hz and 12.3154 Hz for pairs and triplets,
respectively, which is very similar to the estimates based on Gaussian fits to cycle-
frequency distributions.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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